Linear Transformations for Randomness Extraction
نویسندگان
چکیده
Information-efficient approaches for extracting randomness from imperfect sources have been extensively studied, but simpler and faster ones are required in the high-speed applications of random number generation. In this paper, we focus on linear constructions, namely, applying linear transformation for randomness extraction. We show that linear transformations based on sparse random matrices are asymptotically optimal to extract randomness from independent sources and bit-fixing sources, and they are efficient (may not be optimal) to extract randomness from hidden Markov sources. Further study demonstrates the flexibility of such constructions on source models as well as their excellent information-preserving capabilities. Since linear transformations based on sparse random matrices are computationally fast and can be easy to implement using hardware like FPGAs, they are very attractive in the high-speed applications. In addition, we explore explicit constructions of transformation matrices. We show that the generator matrices of primitive BCH codes are good choices, but linear transformations based on such matrices require more computational time due to their high densities.
منابع مشابه
Introducing a method for extracting features from facial images based on applying transformations to features obtained from convolutional neural networks
In pattern recognition, features are denoting some measurable characteristics of an observed phenomenon and feature extraction is the procedure of measuring these characteristics. A set of features can be expressed by a feature vector which is used as the input data of a system. An efficient feature extraction method can improve the performance of a machine learning system such as face recognit...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملOn p-semilinear transformations
In this paper, we introduce $p$-semilinear transformations for linear algebras over a field ${bf F}$ of positive characteristic $p$, discuss initially the elementary properties of $p$-semilinear transformations, make use of it to give some characterizations of linear algebras over a field ${bf F}$ of positive characteristic $p$. Moreover, we find a one-to-one correspondence between $p$-semiline...
متن کاملErratum: Succinct Non-interactive Arguments via Linear Interactive Proofs
Succinct non-interactive arguments (SNARGs) enable verifying NP statements with lower complexity than required for classical NP verification. Traditionally, the focus has been on minimizing the length of such arguments; nowadays researches have focused also on minimizing verification time, by drawing motivation from the problem of delegating computation. A common relaxation is a preprocessing S...
متن کاملOn Pseudo Randomness from Block Ciphers
MISTY is a data encryption algorithm recently proposed by M. Matsui from Mitsubishi. An important property of MISTY is that, in terms of theoretically provable resistance against linear cryptanalysis which along with differential cryptanalysis is the most powerful cryptanalytic attack known to date, it is twice as secure as the Data Encryption Standard or DES. This property can be attributed to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1209.0732 شماره
صفحات -
تاریخ انتشار 2011